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Xlearn is an open-source Python package implementing Convolutional Neural Networks (CNN) for X-ray Science.

Contents 1
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CHAPTER 1

Features

• Correction of instrument and beam instability artifacts

• Low-dose image enhancement

• Feature extraction, segmentation

• Super-resolution X-ray microscopy
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CHAPTER 2

Contribute

• Documentation: https://github.com/tomography/xlearn/tree/master/doc

• Issue Tracker: https://github.com/tomography/xlearn/docs/issues

• Source Code: https://github.com/tomography/xlearn/tree/master/xlearn
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CHAPTER 3

Content

3.1 About

Xlearn implements Deep Neural Network to X-ray science imaging problems including:

• Tomography rotation axis calibration [A3].

• Low-dose image enhancement [A2].

• Feature extraction, segmentation [A1].

• Super-resolution X-ray microscopy (will update later).

• Solving inverse problems with deep learning, such as tomography reconstruction and phase retrieval (will update
late).

3.2 Install

This section covers the basics of how to download and install xlearn.

3.2.1 Installing from source

To install xlearn follow these steps:

1. Install anaconda

2. Install tensorflow. Please install the tensorflow-gpu version with pip. Before the tensorflow-gpu installation,
make sure that the cuda drivers and cudnn are correctly installed to your OS.

3. Install the Xlearn toolbox: Clone the xlearn from GitHub repository:

git clone https://github.com/tomography/xlearn.git xlearn

then:
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cd xlearn
python setup.py install

3.3 API reference

xlearn Modules:

3.3.1 xlearn.transform

Module containing model, predict and train routines

Functions:

model(dim_img, nb_filters, nb_conv) the cnn model for image transformation
train(img_x, img_y, patch_size, patch_step, . . . ) Function description.
predict(mdl, img, patch_size, patch_step, . . . ) the cnn model for image transformation

xlearn.transform.model(dim_img, nb_filters, nb_conv)
the cnn model for image transformation

Parameters

• dim_img (int) – The input image dimension

• nb_filters (int) – Number of filters

• nb_conv (int) – The convolution weight dimension

Returns mdl – Description.

xlearn.transform.train(img_x, img_y, patch_size, patch_step, dim_img, nb_filters, nb_conv,
batch_size, nb_epoch)

Function description.

Parameters

• parameter_01 (type) – Description.

• parameter_02 (type) – Description.

• parameter_03 (type) – Description.

Returns return_01 – Description.

xlearn.transform.predict(mdl, img, patch_size, patch_step, batch_size, dim_img)
the cnn model for image transformation

Parameters

• img (array) – The image need to be calculated

• patch_size ((int, int)) – The patches dimension

• dim_img (int) – The input image dimension

Returns img_rec – Description.
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3.3.2 xlearn.classify

Module containing model, predict and train routines

Functions:

model(dim_img, nb_filters, nb_conv, nb_classes) the cnn model for image transformation
train(x_train, y_train, x_test, y_test, . . . ) Function description.

xlearn.classify.model(dim_img, nb_filters, nb_conv, nb_classes)
the cnn model for image transformation

Parameters

• dim_img (int) – The input image dimension

• nb_filters (int) – Number of filters

• nb_conv (int) – The convolution weight dimension

Returns mdl – Description.

xlearn.classify.train(x_train, y_train, x_test, y_test, dim_img, nb_filters, nb_conv, batch_size,
nb_epoch, nb_classes)

Function description.

Parameters

• parameter_01 (type) – Description.

• parameter_02 (type) – Description.

• parameter_03 (type) – Description.

Returns return_01 – Description.

3.3.3 xlearn.segmentation

Module containing model_choose, seg_train and seg_predict routines

Functions:

seg_train(img_x, img_y[, patch_size, . . . ]) Function description.
seg_predict(img, wpath, spath[, patch_size, . . . ]) Function description

xlearn.segmentation.model_choose(ih, iw, nb_conv, size_conv, nb_down, nb_gpu)

xlearn.segmentation.seg_train(img_x, img_y, patch_size=32, patch_step=1, nb_conv=32,
size_conv=3, batch_size=1000, nb_epoch=20, nb_down=2,
nb_gpu=1)

Function description.

Parameters

• img_x (array, 2D or 3D) – Training input of the model. It is the raw image for the segmen-
tation.

3.3. API reference 9
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• img_y (array, 2D or 3D) – Training output of the model. It is the corresponding segmenta-
tion of the training input.

• patch_size (int) – The size of the small patches extracted from the input images. This size
should be big enough to cover the features of the segmentation object.

• patch_step (int) – The pixel steps between neighbour patches. Larger steps leads faster
speed, but less quality. I recommend 1 unless you need quick test of the algorithm.

• nb_conv (int) – Number of the covolutional kernals for the first layer. This number doubles
after each downsampling layer.

• size_conv (int) – Size of the convolutional kernals.

• batch_size (int) – Batch size for the training. Bigger size leads faster speed. However, it is
restricted by the memory size of the GPU. If the user got the memory error, please decrease
the batch size.

• nb_epoch (int) – Number of the epoches for the training. It can be understand as the number
of iterations during the training. Please define this number as the actual convergence for
different data.

• nb_down (int) – Number of the downsampling for the images in the model.

• nb_gpu (int) – Number of GPUs you want to use for the training.

Returns mdl – The trained CNN model for segmenation. The model can be saved for future seg-
mentations.

xlearn.segmentation.seg_predict(img, wpath, spath, patch_size=32, patch_step=1, nb_conv=32,
size_conv=3, batch_size=1000, nb_down=2, nb_gpu=1)

Function description

Parameters

• img (array) – The images need to be segmented.

• wpath (string) – The path where the trained weights of the model can be read.

• spath (string) – The path to save the segmented images.

• patch_size (int) – The size of the small patches extracted from the input images. This size
should be big enough to cover the features of the segmentation object.

• patch_step (int) – The pixel steps between neighbour patches. Larger steps leads faster
speed, but less quality. I recommend 1 unless you need quick test of the algorithm.

• nb_conv (int) – Number of the covolutional kernals for the first layer. This number doubles
after each downsampling layer.

• size_conv (int) – Size of the convolutional kernals.

• batch_size (int) – Batch size for the training. Bigger size leads faster speed. However, it is
restricted by the memory size of the GPU. If the user got the memory error, please decrease
the batch size.

• nb_epoch (int) – Number of the epoches for the training. It can be understand as the number
of iterations during the training. Please define this number as the actual convergence for
different data.

• nb_down (int) – Number of the downsampling for the images in the model.

• nb_gpu (int) – Number of GPUs you want to use for the training.

Returns save the segmented images to the spath.
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3.3.4 xlearn.utils

Module containing utility routines

Functions:

nor_data(img) Normalize the image
check_random_state(seed) Turn seed into a np.random.RandomState instance If

seed is None, return the RandomState singleton used by
np.random.

extract_patches(image, patch_size, step[, . . . ]) Reshape a 2D image into a collection of patches The
resulting patches are allocated in a dedicated array.

reconstruct_patches(patches, image_size, step) Reconstruct the image from all of its patches.
img_window(img, window_size) Function Description
extract_3d(img, patch_size, step) Function Description

xlearn.utils.check_random_state(seed)
Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used
by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a
RandomState instance, return it. Otherwise raise ValueError.

Parameters seed (type) – Description.

xlearn.utils.expimg(img)

xlearn.utils.extract_3d(img, patch_size, step)
Function Description

Parameters

• img (define img)

• patch_size (describe patch_size)

• step (describe step)

Returns patches (describe patches)

xlearn.utils.extract_patches(image, patch_size, step, max_patches=None, random_state=None)
Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array.

Parameters

• image (array, shape = (image_height, image_width) or) – (image_height, image_width,
n_channels) The original image data. For color images, the last dimension specifies the
channel: a RGB image would have n_channels=3.

• patch_size (tuple of ints (patch_height, patch_width)) – the dimensions of one patch

• step (number of pixels between two patches)

• max_patches (integer or float, optional default is None) – The maximum number of patches
to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the
total number of patches.

• random_state (int or RandomState) – Pseudo number generator state used for random sam-
pling to use if max_patches is not None.

3.3. API reference 11
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Returns patches (array, shape = (n_patches, patch_height, patch_width) or) – (n_patches,
patch_height, patch_width, n_channels) The collection of patches extracted from the image,
where n_patches is either max_patches or the total number of patches that can be extracted.

xlearn.utils.img_window(img, window_size)
Function Description

Parameters

• img (define img)

• window_size (describe window_size)

Returns img_wd (describe img_wd)

xlearn.utils.mlog(img)

xlearn.utils.nor_data(img)
Normalize the image

Parameters img (array) – The images need to be normalized

Returns img – Description.

xlearn.utils.reconstruct_patches(patches, image_size, step)
Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by
filling in the patches from left to right, top to bottom, averaging the overlapping regions.

Parameters

• patches (array, shape = (n_patches, patch_height, patch_width) or) – (n_patches,
patch_height, patch_width, n_channels) The complete set of patches. If the patches con-
tain colour information, channels are indexed along the last dimension: RGB patches would
have n_channels=3.

• image_size (tuple of ints (image_height, image_width) or) – (image_height, image_width,
n_channels) the size of the image that will be reconstructed

• step (number of pixels between two patches)

Returns image (array, shape = image_size) – the reconstructed image

xlearn.utils.rescale_intensity(img)

3.4 Introduction

Machine learning is a robust solution to mimic human’s estimations and predictions for complex data problems [B46].
Convolutional neural network (CNN) [B27] is an efficient and universal algorithm in the family of machine learning for
image processing. It processes the feature of image pattern, rather than the value of each pixel as with classical meth-
ods. Its accuracy and efficiency for image recognition and classification have been proved from various applications
[B36], [B26], [B14], [B33]. The specially designed architecture of CNN also works for supervised transformation of
image style [B15].

Convolutional neural network (CNN) [B27] is a branch of Artificial Neural Network (ANN), which is also known
as Multilayer Perceptron (MLP). As it allows the computational model to learn representations of data with multiple
levels of abstraction, it also belongs to the popular families of “Deep learning” [B29]. As the same idea of ANN and
“Deep learning”, CNN is the process to build a function f between the input data X and output data Y (f: X –> Y ). The
function f does not, like the traditional formulas, represent the data relations with simple mathematical operators and
symbols. It is a composition of multiple layers of weights (W ) with activation functions (K ). The CNNs we present
for this article are supervised learning, which we fit the W for specific input and output data (X –> Y ). After that, this
f can be used to predict the future data with the same rule of the fitting data.
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3.4.1 Transform

Inspired from the CNN classification model, we developed an image transformation model of CNN. The CNN classi-
fication model extracts the features of input image to build a link between the input image and output label. Our image
transformation model extracts the features of the input image to build the link between the input image and output
image, which has close feature of the input, but with different style.

The architecture of the transformation model is as shown in Figure 2.

Figure 2: The architecture of the CNN transformation model using for this article. We use the transformation from
handwriting number 3 to standard shape of 3 as the example.

Half architecture of the transformation model is the same as the classification model. The difference is that we do not
connect the nodes of the fully connected layer to a single number. Instead, we transform it to an image with the same
image size of the previous convolutional layer. After that, we keep using the upsampling layer and convolutional to
convert the feature maps back to a single image. We use this image as the output data and fit the whole network from
the input image. Once the network is trained between specific input and output image, we can transform the future
images as the same rule of the training data.

3.4.2 Classify

CNN was originally developed for image classifications. Its basic and most popular applications are hand-writing
recognition and human face recognition. In these cases, CNN plays the role as a fitting function between the input
images and the output labels. The process to fit the CNN model is so-called “train”. The iterations during the “train”
are called “epochs”. Typically a Stochastic Gradient Descent (SGD) is used for training. Once the CNN is trained for
a specific data model, we can use it as the function to estimate the label of an unknown image containing features that
are close to the training data. This step is called “predict”.

The process to prepare the training data decides the computing model. The more training data we prepare, the better
the prediction results will be. Normally the number of training data should be at least on the magnitude of 104 for a
reasonable prediction. This procedure is always considered difficult, because most of the steps for this task have to be
done manually. in some cases, like solving a general image classification problems for nature images, this can be an
overwhelming task and explains why machine learning techniques are yet not widely applied. However, for the image
classification problems of synchrotron imaging, the image features are normally restricted to some specific aspect and
therefore, we only need to use few images, or, in some cases, as discussed this in Section 3, even use the simulated
images, to train the CNN model.

There is not a standard architecture of CNN for image classification. After we tested different architectures and
parameter to consider their performances and stability, we choose to use the CNN architecture as shown in Fiure 1:

3.4. Introduction 13
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Figure 1: The architecture of the CNN classification model using for this article. We use the classification of hand-
writing number 3 as the example. This diagram shows how the handwriting image has been classified as its related
number.

It includes 3 convolutional layers and 2 maxpooling layers. The first convolutional layer includes 32 convolution
weights to extract 32 feature maps from the inputs. The image size reduces to half at each maxpooling layer. The
number of convolution weights and feature maps doubles after each maxpooling layer. The final layer of the feature
maps are fully connected to data nodes with the activation function. These nodes are connected again with another
activation function and become a single value. We fit this value to be the label that defined in the training data.

3.5 Examples

This section contains Jupyter Notebooks and Python scripts examples for various xlearn functions.

To run these examples in a notebooks install Jupyter or run the python scripts from here

3.5.1 Transform

Train

Here is an example on how to train a convolutional neural network to segment an image. The network is trained using
one raw image and one that has been manually segmented.

Once the training is complete the network will be able to automatically segment a series of raw images.

You can download the python scritp here or the Jupyter notebook here

import dxchange

Image data I/O in xlearn is supported by DXchange.

import matplotlib.pyplot as plt

matplotlib provide plotting of the result in this notebook.

Install xlearn then:

from xlearn.transform import train
from xlearn.transform import model
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batch_size = 800
nb_epoch = 10
dim_img = 20
nb_filters = 32
nb_conv = 3
patch_step = 4
patch_size = (dim_img, dim_img)

img_x = dxchange.read_tiff('../../test/test_data/training_input.tiff')
img_y = dxchange.read_tiff('../../test/test_data/training_output.tiff')

plt.imshow(img_x, cmap='Greys_r')
plt.show()

plt.imshow(img_y, cmap='Greys_r')
plt.show()

3.5. Examples 15
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mdl = train(img_x, img_y, patch_size, patch_step, dim_img, nb_filters, nb_conv, batch_
→˓size, nb_epoch)
mdl.save_weights('training_weights.h5')

Epoch 1/10
26068/26068 [==============================] - 39s - loss: 0.4458
Epoch 2/10
26068/26068 [==============================] - 39s - loss: 0.2074
Epoch 3/10
26068/26068 [==============================] - 39s - loss: 0.1607
Epoch 4/10
26068/26068 [==============================] - 39s - loss: 0.1428
Epoch 5/10
26068/26068 [==============================] - 39s - loss: 0.1321
Epoch 6/10
26068/26068 [==============================] - 39s - loss: 0.1258
Epoch 7/10
26068/26068 [==============================] - 39s - loss: 0.1244
Epoch 8/10
26068/26068 [==============================] - 39s - loss: 0.1169
Epoch 9/10
26068/26068 [==============================] - 39s - loss: 0.1135
Epoch 10/10
26068/26068 [==============================] - 39s - loss: 0.1106

Predict

Here is an example on how to use an already trained convolutional neural network to automatically segment a series
of raw images.

You can download the python scritp here or the Jupyter notebook here
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import dxchange

Image data I/O in xlearn is supported by DXchange.

import matplotlib.pyplot as plt

matplotlib provide plotting of the result in this notebook.

Install xlearn then:

from xlearn.transform import model
from xlearn.transform import predict

batch_size = 800
nb_epoch = 40
dim_img = 20
nb_filters = 32
nb_conv = 3
patch_step = 4

patch_size = (dim_img, dim_img)

mdl = model(dim_img, nb_filters, nb_conv)
mdl.load_weights('training_weights.h5')

fname = '../../test/test_data/predict_test.tiff'
img_test = dxchange.read_tiff(fname)
plt.imshow(img_test, cmap='Greys_r')
plt.show()

fname_save = '../../test/test_data/predict_test_result'

3.5. Examples 17
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img_rec = predict(mdl, img_test, patch_size, patch_step, batch_size, dim_img)

dxchange.write_tiff(img_rec, fname_save, dtype='float32')

plt.imshow(img_rec, cmap='Greys_r')
plt.show()

3.5.2 Rotation Center

An experienced beam line scientist can easily distinguish the well-centered and off-centered reconstructions directly
by eyes without any mathematical calculation. This is always the most accurate way to evaluate the results for a final
step. However, this approach is not applicable for large data sets because it costs too much effort. Here we use, instead,
the classification model of CNN to mimic this process of the human’s brain. Thus an automatic routine to compute
the tomographic rotation axis is developed.

The rotation axis problem can be considered as an image classification problem, because there are significant different
features between a well-center and an off-centered reconstructions. Once the trained CNN can accurately recognize
the well-centered reconstruction from the off-centered reconstructions, we can use it as the principle to automatically
finding the correct rotation center.

We use here the same classification model described in the CNN introduction, which requires two steps to evaluate
the data: train the CNN model, and predict the data with trained model. We developed a special method to prepare the
training data sets and to process the prediction.

In the procedure of preparing the training data, we reconstruct a slice of tomographic image with different rota-
tion center. A group of reconstruction results are obtained. During the training phase, we select the well-centered
reconstruction by eyes, and label the rest as off-centered reconstruction. We extract overlapped patches from the
well-centered image and label these patches as 1, and also from the off-centered images and label them as 0.

A patch is a square window (sp X sp) from the image. The patches are overlapped one by one. The distance of the
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center between two neighbor patches is the patch steps (n_s). The patch number is

𝑁𝑝 =
1

𝑛2
𝑠

(ℎ− 𝑠𝑝) · (𝑤 − 𝑠𝑝)

for a image with height (h ) and width (w ). There are two reasons for using small patches instead of the whole image:

• We can generate enough train data only from one single image.

• The overlapped patches provide multiple evaluations of the same feature of the image.

Once we have extracted the patches from the well-centered and off-centered images, we select specific number
(P_{train}) of patches with their labels (Y_l ) from both of these groups. We use the patches as input X_{train}
and the labels as output to train the CNN model. The trained CNN classification model is now capable to distinguish
the well-centered or off-centered patches.

The prediction procedure evaluates the Y_l of the patches from the reconstructions of different rotation axis. We first
do tomographic reconstruction with different rotation axis. For each reconstructed images, we extract specific number
of patches. The size of the patches should be the same as the training data. The number of the patches can be roughly
in the hundreds. We use these patches as the input data for trained CNN and evaluate their label. If the value of the
label is close to 1, it means the feature of the patch is close to well-centered. If it is 0, it is off-centered. We computer
the summation (S_l ) of the labels for the patches from one reconstruction. The reconstruction with the maximum S_l
is the one well-centered as our evaluation model.

Train

Here is an example on how to train a convolutional neural network to identify a tomographic reconstructed image that
has the best center.

The network is trained using one image off center and the best centered reconstruction. Once the training is complete
the network will be able to evaulate a series of reconstructed images with different rotation center and select the one
with the best center.

You can download the python scritp here or the Jupyter notebook here

To run this example please download the test data from the classify_train folder at url

import dxchange
import numpy as np
from xlearn.utils import nor_data
from xlearn.utils import extract_3d
from xlearn.utils import img_window
from xlearn.classify import train

Using Theano backend.
Using gpu device 0: Tesla M2050 (CNMeM is disabled, cuDNN not available)

np.random.seed(1337)
dim_img = 128
patch_size = (dim_img, dim_img)
batch_size = 50
nb_classes = 2
nb_epoch = 12

number of convolutional filters to use

nb_filters = 32

size of pooling area for max pooling

3.5. Examples 19
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nb_pool = 2

convolution kernel size

nb_conv = 3

fname = '../../test/test_data/1038.tiff'
img_x = dxchange.read_tiff(fname)

plt.imshow(img_x, cmap='Greys_r')
plt.clim(-0.0005,0.0028)
plt.show()

ind_uncenter1 = range(1038, 1047)
ind_uncenter2 = range(1049, 1057)
uncenter1 = dxchange.read_tiff_stack(fname, ind=ind_uncenter1, digit=4)
uncenter2 = dxchange.read_tiff_stack(fname, ind=ind_uncenter2, digit=4)
uncenter = np.concatenate((uncenter1, uncenter2), axis=0)
uncenter = nor_data(uncenter)

uncenter = img_window(uncenter[:, 360:1460, 440:1440], 200)

uncenter_patches = extract_3d(uncenter, patch_size, 1)

np.random.shuffle(uncenter_patches)

center_img = dxchange.read_tiff('../../test/test_data/1048.tiff')

plt.imshow(center_img, cmap='Greys_r')
plt.clim(-0.0005,0.0028)
plt.show()
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center_img = nor_data(center_img)

center_img = img_window(center_img[360:1460, 440:1440], 400)
center_patches = extract_3d(center_img, patch_size, 1)
np.random.shuffle(center_patches)

x_train = np.concatenate((uncenter_patches[0:50000], center_patches[0:50000]), axis=0)
x_test = np.concatenate((uncenter_patches[50000:60000], center_patches[50000:60000]),
→˓axis=0)
x_train = x_train.reshape(x_train.shape[0], 1, dim_img, dim_img)
x_test = x_test.reshape(x_test.shape[0], 1, dim_img, dim_img)
y_train = np.zeros(100000)
y_train[50000:99999] = 1
y_test = np.zeros(20000)
y_test[10000:19999] = 1

model = train(x_train, y_train, x_test, y_test, dim_img, nb_filters, nb_conv, batch_
→˓size, nb_epoch, nb_classes)

(100000, 1, 128, 128) (100000, 2) (20000, 1, 128, 128) (20000, 2)
Train on 100000 samples, validate on 20000 samples
Epoch 1/12
100000/100000 [==============================] - 836s - loss: 0.1251 - acc: 0.9604 -
→˓val_loss: 0.0726 - val_acc: 0.9704
Epoch 2/12
100000/100000 [==============================] - 835s - loss: 0.0085 - acc: 0.9977 -
→˓val_loss: 0.1675 - val_acc: 0.9311
Epoch 3/12
100000/100000 [==============================] - 835s - loss: 0.0045 - acc: 0.9989 -
→˓val_loss: 0.0155 - val_acc: 0.9949
Epoch 4/12
100000/100000 [==============================] - 832s - loss: 0.0034 - acc: 0.9990 -
→˓val_loss: 0.0090 - val_acc: 0.9976 (continues on next page)
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(continued from previous page)

Epoch 5/12
100000/100000 [==============================] - 834s - loss: 0.0018 - acc: 0.9995 -
→˓val_loss: 0.1212 - val_acc: 0.9512
Epoch 6/12
100000/100000 [==============================] - 835s - loss: 9.9921e-04 - acc: 0.
→˓9998 - val_loss: 0.0033 - val_acc: 0.9991
Epoch 7/12
100000/100000 [==============================] - 835s - loss: 5.3466e-04 - acc: 0.
→˓9999 - val_loss: 6.5040e-04 - val_acc: 1.0000
Epoch 8/12
100000/100000 [==============================] - 836s - loss: 7.6305e-04 - acc: 0.
→˓9998 - val_loss: 0.0016 - val_acc: 0.9997
Epoch 9/12
100000/100000 [==============================] - 833s - loss: 3.9566e-04 - acc: 0.
→˓9999 - val_loss: 8.2169e-04 - val_acc: 1.0000
Epoch 10/12
100000/100000 [==============================] - 835s - loss: 4.5675e-04 - acc: 0.
→˓9999 - val_loss: 8.0605e-04 - val_acc: 1.0000
Epoch 11/12
100000/100000 [==============================] - 833s - loss: 3.1511e-04 - acc: 1.
→˓0000 - val_loss: 8.0620e-04 - val_acc: 1.0000
Epoch 12/12
100000/100000 [==============================] - 833s - loss: 2.0671e-04 - acc: 1.
→˓0000 - val_loss: 8.0606e-04 - val_acc: 1.0000

Test score: 0.000806061122949
Test accuracy: 0.99995

model.save_weights('classify_training_weights.h5')

Evaluate

Here is an example on how to use an already trained convolutional neural network to evaluate and select the best
image according to the training received. In this example the network has been trained to select the best rotation axis
centered reconstruction. The test consists of asking the network to select the best centered images coming from a
similar sample collected on a different tomographic beamline.

You can download the python scritp here or the Jupyter notebook here

To run this example please download the test data from the classify_evaluate folder at url

import dxchange
import numpy as np
from xlearn.utils import nor_data
from xlearn.utils import extract_3d
from xlearn.utils import img_window
from xlearn.classify import model
import matplotlib.pyplot as plt
import time
import glob

Using Theano backend.
Using gpu device 0: Tesla M2050 (CNMeM is disabled, cuDNN not available)
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np.random.seed(1337)

dim_img = 128
patch_size = (dim_img, dim_img)
batch_size = 50
nb_classes = 2
nb_epoch = 12

number of convolutional filters to use

nb_filters = 32

size of pooling area for max pooling

nb_pool = 2

convolution kernel size

nb_conv = 3

Please download the test data from the classify_evaluate folder at

http://tinyurl.com/APS-xlearn

and put them in the test_data folder

nb_evl = 100

fnames = glob.glob('../../test/test_data/*.tiff')
fnames = np.sort(fnames)

mdl = model(dim_img, nb_filters, nb_conv, nb_classes)

mdl.load_weights('classify_training_weights.h5')

Y_score = np.zeros((len(fnames)))

for i in range(len(fnames)):
img = dxchange.read_tiff(fnames[i])
img = nor_data(img)
X_evl = np.zeros((nb_evl, dim_img, dim_img))

for j in range(nb_evl):
X_evl[j] = img_window(img[360:1460, 440:1440], dim_img)

X_evl = X_evl.reshape(X_evl.shape[0], 1, dim_img, dim_img)
Y_evl = mdl.predict(X_evl, batch_size=batch_size)
Y_score[i] = sum(np.dot(Y_evl, [0, 1]))

ind_max = np.argmax(Y_score)
print('The well-centered reconstruction is:', fnames[ind_max])
plt.plot(Y_score)
plt.show()

('The well-centered reconstruction is:', '../../test/test_data/1023.00.tiff')
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3.6 Credits

3.6.1 Citations

We kindly request that you cite the following article [A2], [A3], and [A1] if you use Xlearn.

3.6.2 References
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